Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling?

نویسندگان

  • A A Pitsillides
  • S C Rawlinson
  • R F Suswillo
  • S Bourrin
  • G Zaman
  • L E Lanyon
چکیده

The structural competence of the skeleton is maintained by an adaptive mechanism in which resident bone cells respond to load-induced strains. To investigate the possible role of the messenger molecule nitric oxide (NO) in this response, we studied NO production in well-characterized organ culture systems, rat long bone-derived osteoblast-like (LOBs) cells, and embryonic chick osteocytes (LOCYs) in monolayer culture. In superfused cancellous bone cores, loading (for 15 min) produces increases in NO2- (stable NO metabolite) release during the loading period, which paralleled those in PGI2 and PGE2. Loading of rat vertebrae and ulnae produces increases in NO2- release, and in ulnae NO synthase inhibitors diminish these responses. Transient rapid increases in NO release are stimulated by strain in both LOBs and LOCYs. Polymerase chain reaction amplification of extracted mRNA shows that rat ulnae, LOBs, and LOCYs express both the inducible and neuronal (constitutive) isoforms of NO synthase. Adaptability to mechanical strain relies on assessment of the strain environment followed by modification of bone architecture. Immediate increases in NO production induced by loading suggest the involvement of NO in strain measurement and cellular communication to establish strain distribution, as well as potentially in adaptive changes in bone cell behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Strain Distribution in Bone around Implant in Treatment Design of Overdentures Using Computer and Modeling of Finite Elements

Introduction: Introduction: Few studies have investigated the distribution of stress around implants. In this study the distribution of stress in bones around implants was investigated in five overdenture (OD) treatment designs including OD-1, OD-2, OD-3, OD-4 and OD-5. Materials and methods: The Catia modeling software was used in order to simulate the tooth/implant model and bone. First, the ...

متن کامل

Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain.

The nature of the stimulus sensed by bone cells during mechanical usage has not yet been determined. Because nitric oxide (NO) and prostaglandin (PG) production appear to be essential early responses to mechanical stimulation in vivo, we used their production to compare the responsiveness of bone cells to strain and fluid flow in vitro. Cells were incubated on polystyrene film and subjected to ...

متن کامل

Strain-related control of bone (re)modeling: objectives, mechanisms and failures.

a control process dominated by the "error" signals associated with loading situations to which the bone was not habituated rather than one driven by prolonged exposure to customary loading. Within these short periods of loading high strains 2 , high strain rates 3 and interruption of strain cycles with periods of rest 4 all increase a strain regimen's osteogenic potential. The effects of vibrat...

متن کامل

Responses of bone cells to biomechanical forces in vitro.

In this paper, we review recent studies of the mechanism by which mechanical loading of bone is transduced into cellular signals of bone adaptation. Current biomechanical theory and in vivo as well as in vitro experiments agree that the three-dimensional network of osteocytes and bone-lining cells provides the cellular basis for mechanosensing in bone, leading to adaptive bone (re)modeling. The...

متن کامل

Therapeutic Potential of Mouse Bone Marrow Mesenchymal Stem Cells in Carbon Tetrachloride (Ccl4)-Induced Liver Fibrosis

Purpose: To study the effect of allogenic bone marrow mesenchymal stem cells (BMMSCs) transplantation on carbon tetrachloride-induced liver fibrosis in mice. Materials and Methods: Fifty five female NMRI mice were divided in 5 groups, and to induce liver fibrosis CCL4 intraperitonealy was injected 1ml/Kg twice a week for 8 weeks 106 allogenic BMMSCs were infused in cell therapy group via tail v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 9 15  شماره 

صفحات  -

تاریخ انتشار 1995